خصائص بعض الطينات المحلية بصعيد مصر: دراسة تحليلية Properties of Some Local Clays in Upper Egypt: An Analytical Study

نوع المستند : المقالة الأصلية

المؤلف

مدرس الخزف بقسم التربية الفنية ، كلية التربية النوعية، جامعة جنوب الوادي

المستخلص

ملخص الدراسة:
هدفت الدراسة إلى توصيف وتحليل الخصائص الفيزيائية والكيميائية للطينات المحلية في صعيد مصر، وتقييم إمكانات الطينات المحلية في استخدامات مختلفة تشمل التطبيقات والتكنولوجيا الحديثة في الخزف، وتقديم توصيات عملية لتحسين الاستفادة من الطينات المحلية في تطبيقات متقدمة في الخزف. واتبعت الدراسة المنهج الوصفي التحليلي والتجريبي لتحليل بعض الطينات باستخدام تقنيات علمية متعددة لتوصيف خصائصها الفيزيائية والكيميائية. وتمثلت عينة الدراسة في الطينات المحلية بمحافظة قنا وهي (طمي "الطين الزراعي" وطينة المارل "الَطفلة" وطينة الحِيبة "السيل"). وتصلت الدراسة إلى العديد من النتائج منه: أظهرت الدراسة تباينًا في تصنيف الطينات المحلية وفقًا لنسب الطين والطمي والرمل. الطينات الثلاث تمتاز بخصائص مختلفة تجعلها ملائمة لمجموعة واسعة من الاستخدامات؛ وكشف تحليل XRD عن وجود معادن مثل الكوارتز والكاولينيت والمونتموريلونيت في الطينات المحلية. هذه المكونات عززت الليونة والصلابة، خاصة في طينة السيل والطين الزراعي؛ وأن البيانات التحليلية توفر فرصة لتطوير تقنيات إنتاج مبتكرة تستخدم المواد المحلية بشكل أكثر كفاءة وفعالية، مما يساهم في تحسين جودة المنتجات النهائية. وأوصت الدراسة بالعديد من التوصيات منها: إجراء دراسات إضافية تشمل الطينات من مواقع مختلفة لتوسيع قاعدة البيانات وتعزيز الفهم العلمي؛ وتطوير خلطات طينية مخصصة من خلال دمج أنواع مختلفة من الطينات المحلية لتحسين الخصائص المطلوبة حسب الاستخدام؛ وتشجيع استخدام الطينات المحلية في تطبيقات متقدمة لتعزيز الاستدامة وتقليل الاعتماد على المواد المستوردة.
Abstract:
The study aimed to describe and analyze the physical and chemical properties of local clays in Upper Egypt, evaluate their potential for various uses, including modern applications and technologies in ceramics, and provide practical recommendations to enhance the utilization of local clays in advanced ceramic applications. The study employed a descriptive, analytical, and experimental methodology to analyze certain clays using multiple scientific techniques to characterize their physical and chemical properties. The study sample consisted of local clays from Qena Governorate, including agricultural clay “Taffla” marl clay, “Hieba” Flood Clay, and Nile clay. The study yielded several findings, such as the variation in the classification of local clays based on the proportions of clay, silt, and sand. The three types of clay possess distinct properties that make them suitable for a wide range of applications. XRD analysis revealed the presence of minerals such as quartz, kaolinite, and montmorillonite in the local clays. These components enhanced plasticity and hardness, particularly in floodplain clay and agricultural clay. Additionally, the analytical data provided opportunities to develop innovative production techniques that utilize local materials more efficiently, thereby improving the quality of final products .The study recommended several actions, including conducting further studies on clays from different locations to expand the database and enhance scientific understanding; developing customized clay blends by combining various types of local clays to optimize desired properties for specific uses; and promoting the use of local clays in advanced applications to enhance sustainability and reduce dependence on imported materials.

الكلمات الرئيسية


  1. المصادر والمراجع:

    المصادر والمراجع العربية:

    1. سليمان، ابراهيم دسوقي عبدالموجود (2024). طرق توصيف وتحليل خصائص الطينات ودورها في تحسين الانتاج الخزفي. مجلة جامعة جنوب الوادى الدولية للعلوم التربوية، المجلد 7، العدد 13. doi: https://doi.org/10.21608/musi.2024.341832.1194
    2. عبد الموجود، ابراهيم دسوقي. (2024). معالجة الطينات المحلية لنتاج خزفيات معاصرة باستخدام تقنية الطباعة الخزفية ثلاثية الأبعاد. رسالة دكتوراة. كلية التربية النوعية، جامعة جنوب الوادي. doi: http://dx.doi.org/10.13140/RG.2.2.35203.11047

    المصادر والمراجع الأجنبية:

    1. Abdeen, H. H. (2016). Properties of Fired Clay Bricks Mixed with Waste Glass. Master Thesis. Palestine: The Islamic University–Gaza.
    2. Ahmadi, I., & Ghaur, H. (2013). Silage-corn harvesting machinery traffic effects on soil bulk density and water permeability. Research in Agricultural Engineering, Vol. 59, No. 4, pp. 136-140. doi: https://doi.org/10.17221/2/2013-RAE
    3. Amorós, J., & et.al. (2010). Non-destructive measurement of bulk density distribution in large-sized ceramic tiles. Journal of the European Ceramic Society, Volume 30, Issue 14, pp. 2927-2936. doi: https://doi.org/10.1016/j.jeurceramsoc.2010.01.033
    4. Andrade, F., & et.al. (2011). Measuring the plasticity of clays: A review. Applied Clay Science Volume 51, Issues 1–2, 1-7. doi: https://doi.org/10.1016/j.clay.2010.10.028
    5. ASTM C20-00. (2022). Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water. USA: ASTM Compass. doi: https://doi.org/10.1520/C0020-00R22
    6. ASTM C326-09. (2018). Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays. USA: ASTM Compass. doi: https://doi.org/10.1520/C0326-09R18
    7. ASTM C830-00. (2016). Standard Test Methods for Apparent Porosity, Liquid Absorption, Apparent Specific Gravity, and Bulk Density of Refractory Shapes by Vacuum Pressure, ASTM Compass. USA: ASTM Compass. doi: https://doi.org/10.1520/C0830-00R16
    8. ASTM D4943-08. (2018). Standard Test Method for Shrinkage Factors of Soils by the Wax Method. USA: ASTM Compass. doi: https://doi.org/10.1520/D4943-08
    9. Asuri, S., & Keshavamurthy, P. (2016). Expansive Soil Characterisation: an Appraisal. INAEL 1, pp. 29–33. doi: https://doi.org/10.1007/s41403-016-0001-9
    10. Bobrowsky, P. T., & et.al. (2018). Encyclopedia of Engineering Geology: Encyclopedia of Earth Sciences Series. Germany: Springer.
    11. Boivin, P., & et.al. (2004). Relationship between Clay Content, Clay Type, and Shrinkage Properties of Soil Samples. Soil Science Society of America, Volume68, Issue4, pp. 1145-1153. doi: https://doi.org/10.2136/sssaj2004.1145
    12. Gapak, Y., & et.al. (2017). Laboratory determination of volumetric shrinkage behavior of bentonites: A critical appraisal. Applied Clay Science, Volume 135, pp. 554-566. doi: https://doi.org/10.1016/j.clay.2016.10.038
    13. Garrison, E. (2016). Techniques in Archaeological Geology: Natural Science in Archaeology (Vol. 2nd Edition). Springer: Germany.
    14. Gorączko, A., & Olchawa, A. (2017). The Amounts of Water Adsorbed to the Surface of Clay Minerals at the Plastic Limit. Archives of Hydro-Engineering and Environmental Mechanics, Vol. 64, No. 3–4, P. 165., 155-162. doi: https://doi.org/10.1515/heem-2017-0010
    15. Groenendyk, D. G., & et.al. (2015). Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function. PLoS ONE 10(6),e0131299, 1-7. doi: https://doi.org/10.1371/journal.pone.0131299
    16. Grønbech, G. L., & et.al. (2011). Comparison of Liquid Limit of Highly Plastic Clay by Means of Casagrande and Fall Cone Apparatus. 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering 64th Canadian Geotechnical Conference, October 2-6. Toronto, Ontario, Canada.
    17. Hamer, F., & Hamer, J. (2015). The Potter's Dictionary of Materials and Techniques. USA: University of Pennsylvania Press.
    18. Holtz, R. D., & et.al. (2011). An Introduction to Geotechnical Engineering (2nd Edition ed.). UK: Pearson.
    19. Hoogsteen, M. J., & et.al. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science,Volume 66, Issue 2, 320 – 328. doi: https://doi.org/10.1111/ejss.12224
    20. ISO-18754. (2020). Fine ceramics (advanced ceramics, advanced technical ceramics) Determination of density and apparent porosity. Vernier, Geneva, Switzerland.
    21. Janet J. Kipsanai, e. (2017). A Study of Selected Kenyan Anthill Clays for Production of Refractory Materials. International Journal of Scientific and Research Publications, Volume 7, Issue 9, pp. 169-179.
    22. Jock, A. A., & et.al. (2013). Development of Refractory Bricks from Nigerian Nafuta Clay Deposit. International Journal of Materials, Methods and Technologies, Vol. 1, No. 10, p.190., 189-195.
    23. Kipsana, J. J. (2018). A Study of the Refractory Properties of Selected Clay deposit in Chavakali, Kenya. International Journal of Scientific and Technical Research in Engineering (IJSTRE), Volume 3, Issue 1, pp. 19-27.
    24. Lydia, J. S., & et.al. (2019). Statistical Analysis on Physico-Chemical Properties of Some Nigerian Clay Deposits. Journal of Materials Science and Chemical Engineering Vol.7 No.8. doi: https://doi.org/10.4236/msce.2019.78007
    25. Mat Nawi, A. (2013). Effect of waste plaster of paris on physical and mechanical properties of ceramic pottery body. Master Thesis. Malaysia: Universiti Tun Hussein Onn Malaysia.
    26. McColm, I. (2013). Dictionary of Ceramic Science and Engineering. Germany: Springer Science & Business Media.
    27. McColm, I. (2013). Dictionary of Ceramic Science and Engineering. New York: Springer.
    28. Mineralogical Society of the UK and Ireland. (2023, 1 7). Images of Clay. Retrieved from Mineralogical Society of the UK and Ireland: https://www.minersoc.org/images-of-clay.html
    29. Mukherjee, S. (2013). Science of Clays: Applications in Industry Engineering And Environment. USA: Springer.
    30. Nelson, J. D., & et.al. (2015). Foundation Engineering for Expansive Soils. New Jersey, USA: Wiley & Sons, Inc.
    31. Otçu, N. Ü., & et.al. (2017). Determination of the Plasticity Index of Soils with Fine-Grained Soils Using Methylene Blue Test. Journal of Geoscience and Environment Protection, 5, 165-181. doi: https://doi.org/10.4236/gep.2017.53012
    32. Otunniyi, I. O. (2013). In Situ Determination of Surface Porosity and Pore Characterization in Refractories. Journal of Materials and Metallurgical Engineering, Volume 3, Issue 3, pp. 14-22.
    33. Oummadi, S. (2019). Drying behaviour of ceramic green bodies: experimental characterization and numerical modelling. D. Thesis. France: Université De Limoges.
    34. Phogat, V., & et.al. (2015). Soil Physical Properties. In e. Rattan R.K. (Ed.), Soil Science: An Introduction. New Delhi: Indian Society of Soil Science.
    35. Prasanna, H. S., & et.al. (2022). A Study on Volumetric Shrinkage of Compacted Fine-Grained Soils Subjected to Various Energy Levels. In L. Nandagiri, & et.al., Sustainability Trends and Challenges in Civil Engineerin. Lecture Notes in Civil Engineering, vol 162, Springer. doi: https://doi.org/10.1007/978-981-16-2826-9_17
    36. Rice, P. M. (2015). Pottery Analysis (2rd Edition ed.). USA: University of Chicago Press.
    37. Twarakavi, N. K. (2010). Can texture-based classification optimally classify soils with respect to soil hydraulics? WATER RESOURCES RESEARCH, VOL. 46, W01501, P. 1., 1-11. doi: https://doi.org/10.1029/2009WR007939
    38. Velde, B. (1995). Origin and Mineralogy of Clays: Clays and the Environment. USA: Springer-Verlag Berlin Heidelberg.
    39. Wang, Y., & et.al. (2013). Shrinkage behaviour of a compacted lime-treated clay. Géotechnique Letters, Volume 10, Issue 2, pp. 1-5. doi: https://doi.org/10.1680/jgele.19.00006

    Wen, B. (2002). A Comparative Study of Particle Size Analyses by Sieve-Hydrometer and Laser Diffraction Methods. Geotechnical Testing Journal, Dec, Vol. 25, No. 4. doi: https://doi.org/10.1520/GTJ11289J